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Thermodynamics and kinetics 

• Thermodynamic laws 
• Half-cell reactions 
• Kinetics 
• Acid-Base 
• Equilibrium calculations 
 Speciation calculation from complexation 

constants 
 

• Provide review of concepts for applications to 
radiochemistry 
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Thermodynamic terms 
• Heat Capacity (Cp) 
 Heat required to raise one 

gram of substance 1 °C 
 Al; Cp = 0.895 J/gK 
1 cal = 4.184 J  

 What is the heat needed to 
increase 40 g of Al by 10 K 
 (0.895 J/gK)(40g)(10K)= 

358 J 
• Exothermic 
 Reaction produces heat (at 

25 °C) 
C(s) + O2(g) <--> CO2(g) + 

393.76 kJ  
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Thermodynamic terms 
• Endothermic 
 Reaction requires energy (at 

25 °C) 
2 HgO + 181.70 kJ <--> 2 Hg + 

O2 
Enthalpy (∆H) 

• Energy of a system (heat 
content) 
 Internal energy, volume, 

pressure 
 Accounts for energy 

transferred to environment 
by expansion or heating 

• ∆H = ∆Hproducts - ∆Hreactants 
• Exothermic reactions, negative 
∆H 
 Negative ∆H tend to be 

spontaneous 
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Enthalpy (∆H) 
• Bond energies 
 Can be used to estimate ∆H 
 N2 + 3 H2 <--> 2 NH3 

 6(351.5)-945.6-3(436.0) = -144.6 kJ/2 mole 
=-72.3 kJ/mole (actual -46.1 kJ/mol) 

• Aqueous Ions (use ∆H values, databases available for 
different states) 
 ∆Hproducts

-∆Hreactants 
2 H+ + CO3

2- <--> CO2 + H2O 
-393.5 + (-285.8)-(-677.1+2(0)) = -2.2 kJ/mol 

CO2(g) H2O(l) CO3
2- H+ 
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∆H determination 

ΣCp is the sum of the heat capacities 

Standard Solution 
Ag+ 105.579  
AgCl2

- -245.2  
Ag(NH3)2+ -111.29  
Ag(S2O3)2

- -1285.7  
Al3+ -531  
Br- -121.55  
BrO3- -67.07  
Ca2+ -542.83  
Cd2+ -75.9  
Cd(CN)4

2- 428  
Cd(NH3)4

2+ -450.2  
Ce3+ -696.2  
Ce4+ -537.2  
CH3COO- -486.01  
CH3COOH -485.76  
CN- 150.6  
CNS- 76.44  
Cl- -167.15  
ClO4- -129.33  
CO2 -413.8 
CO3

2- -677.14 
H+ 0  
H2O2 -191.17 
I- -55.19 
I3- -51.5 
IO3- -221.3 
K+ -252.38 
NH3 -80.29 
NH4+ -132.51 
NO3- -205 
Na+ -240.12 
OH- -229.99 
O2 -11.7 
SO4

2- -909.27 
Sn2+ -8.8  
Sr2+ -545.8 
Tl3+ 196.6 
U4+ -591.2 
UO2

2+ -1019.6 

Pure substance 
CaC2O4(c) -1360.6  
CaF2(c) -1219.6  
Ca3(PO4)2(c) -4109.9  
CaSO4(c,anhydrite) -1434.1  
Cd(g) 2623.54  
Cd2+(g) 112.01  
Cd(OH)2(c) -560.7  
CdS(c) -161.9  
Cl(g) 121.679  
Cl-(g) -233.13  
ClO2(g) 102.5  
Cu(g) 338.32  
Cu2O(c,cuprite) -168.6  
CuO(c,tenorite) -157.3  
Cu(OH)2(c) -449.8  
Cu2S(c,chalcocite) -79.5  
CuS(c,covellite) -53.1  
F(g) 78.99  
F-(g) -255.39  
Fe(g) 416.3 
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Entropy (∆S) and Gibbs Free Energy (∆G) 
• Randomness of a system 

 increase in ∆S tends to be spontaneous 
• Enthalpy and Entropy can be used for evaluating the free energy of a system 
• Gibbs Free Energy 

 ∆G = ∆H -T∆S 
 ∆G=-RTlnK 

K is equilibrium constant 
Activity at unity 

 Compound  ∆G° (kJ/mol) at 298.15 K 
H2O   -237.129 
OH-

(aq)   -157.244 
H+

(aq)   0 
H2OH++OH-  

 What is the constant for the reaction? 
Products-reactants 

• At 298.15 K 
∆G(rxn) = 0 + -157.244 - (-273.129) = 79.9 kJ/mol 
lnK= (79.9E3/(-8.314*298.15))=-32.2;  K=1E-14, Kw = [H+][OH-] 
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Thermodynamic Laws 

• 1st law of thermodynamics 
 Energy is conserved in a system 
Can be changed or transferred 

 Heat and work are energy transfer 
∆E = q (heat absorbed) + w (work) 

• 2nd law of thermodynamics 
 Reactions tend towards equilibrium 
Increase in entropy of a system 

 Spontaneous reaction for -∆G 
∆G = 0, system at equilibrium 

• 3rd law of thermodynamics 
 Entropies of pure crystalline solids are zero at 0 K 
 Defines absolute zero 
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Redox Reactions:  Faraday Laws 
• In 1834 Faraday demonstrated quantities of chemicals which 

react at electrodes are directly proportional to charge passed 
through the cell 
 96487 Coulomb (C) is the charge on 1 mole of electrons = 

1F (faraday) 
• Cu(II) is electrolyzed by a current of 10 A (C/s) for 1 hr 

between Cu electrode 
 How much Cu reacts 

• anode:  Cu <--> Cu2+ + 2e- 
• cathode: Cu2+ + 2e- <--> Cu 
 Number of electrons 
2 from redox reaction 

* (10A)(3600 sec)/(96487 C/mol) = 0.373 F 
* 0.373 mole e- (1 mole Cu/2 mole e-) = 0.186 mole Cu 
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Half-cell potentials 
• Standard potential 
 Defined as ε°=0.00 V for 
H2(atm) <--> 2 H+ (1.000M) + 2e- 

• Other reactions compared to H2 
• Cell reaction for  
 Zn and Fe3+/2+  at 1.0 M 

 Write as reduction potentials 
Fe3+ + e- <--> Fe2+  ε°=0.77 V 
Zn2+ + 2e- <-->Zn   ε°=-0.76 V 

* Reduction potentials are available 
http://www.csudh.edu/oliver/chemdata/data-
e.htm 

• Reduction potential for Fe3+ is larger 
 Fe3+ is reduced, Zn is oxidized in reaction 

http://www.csudh.edu/oliver/chemdata/data-e.htm
http://www.csudh.edu/oliver/chemdata/data-e.htm
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Half-Cell Potentials 
• Overall balanced equation 
 2Fe3+ +Zn <--> 2Fe2+ + Zn2+   ε°=0.77+0.76=1.53 V 

• Use standard reduction potential 
• Half cell potential values are not multiplied  
 ε° is for a mole of electrons 

Application of Gibbs Free Energy 
• If work is done by a system 
 ∆G = -ε°nF (n= e-) 

• Find ∆G for Zn/Cu cell at 1.0 M 
 Cu2+ + Zn <--> Cu + Zn2+   

  ε°=1.10 V 
 2 moles of electrons (n=2) 
∆G =-2(96487C/mole e-)(1.10V) 
∆G = -212 kJ/mol 
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Nernst Equation 
• Compensated for non unit activity (not 1 M) 
• Relationship between cell potential and activities 
• aA + bB +ne- <--> cC + dD 

 
 
 
• At 298K 2.3RT/F = 0.0592 
• What is potential of an electrode of Zn(s) and 0.01 M 

Zn2+ 
• Zn2+ +2e- <--> Zn   ε°= -0.763 V 
• activity of metal is 1 

ε = ε° −
2.30RT

nF
log [C]c[D]d

[A]a[B]b

ε = −0.763 −
0.0592

2
log 1

0.01
= −0.822V
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Kinetics and Equilibrium 
• Kinetics and equilibrium important concepts in examining and describing chemistry 

 Identify factors which determine rates of reactions 
Temperature, pressure, reactants, mixing 

 Describe how to control reactions 
 Explain why reactions fail to go to completion 
 Identify conditions which prevail at equilibrium 

• Rate of reaction 
 Can depend upon conditions 

• Free energy does not dictate kinetics 
 Thermodynamics can be decoupled from kinetics 

• Thermodynamics concerned with difference between initial and final state 
• Kinetics account for reaction rates and describe the conditions and mechanisms 

of reactions 
 difficult to describe from first principles 

• General factors effecting kinetics 
 Nature of reactants 
 Effective concentrations 
 Temperature 
 Presence of catalysts 
 Number of steps 
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Nature of Reactants 
• Ions react rapidly 
 Ag+ + Cl- <--> AgCl(s)  Very fast 

• Reactions which involve bond breaking are slower 
 NH4

+ + OCN- <-->OC(NH2)2 
• Redox reactions in solutions are slow 
 Transfer of electrons are faster than those of atomic transfer 

• Reactions between covalently bonded molecules are slow 
 2 HI(g) <--> H2(g) + I2(g) 

• Structure 
 Phosphorus (white and red) 

• Surface area 
 larger surface area increases reaction 

• Mixing increases interaction 
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Rate Law 
• Concentration of reactant or product per unit time 
• Effect of initial concentration on rate can be examined 
 rate = k[A]x[B]y 

 rate order = x + y 
 knowledge of order can help control reaction 
 rate must be experimentally determined 

 
Rate=k[A]n; A=conc. at time t, Ao=initial conc., X=product conc. 
Order rate equation  k 
0 [A0]-[A]=kt, [X]=kt  mole/L sec 
 
1  ln[A0]-ln[A]=kt, ln[A0]-ln([Ao]-[X])=kt  1/sec 
 
2   L/mole sec 
 
 
3    L2/mole2 sec 

 
 
 

1
[A]2 −

1
[Ao]2 =

kt
2

1
([Ao] − [X])2 −

1
[Ao]2 =

kt
2

1
[A]

−
1

[Ao]
= kt 1

[Ao ]− [X]
−

1
[Ao]

= kt
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Rate Law 
• Temperature 
 Reactions tend to double for every 10 °C 

• Catalysts 
 Accelerate reaction but are not used 
Pt surface 

 Thermodynamically drive, catalysts drive kinetics 
 If not thermodynamically favored, catalysts will not 

drive reaction 
• Autocatalytic reactions form products which act as 

catalysts 



2-16 

Complexation Kinetics 
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Kinetic Data Evaluation 

Evaluation of absorbance and kinetic data for 111Py12 and 111Py14 with uranium at pH 4.  
The concentration of ligand and uranium is 50x10-6 mol/L. 
Ligand Abso

 ∆Abseq
 k (min-1) 95% Equilibrium 

    Time (min)  
111Py12 7.86±0.82 5.66±1.28 4.65±0.47x10-5 6.44±0.65x104  
111Py14 4.82±1.70 7.06±5.76 4.24±0.80x10-5 7.07±1.33x104  

Abst
λ1

λ 2

∫ = Abso
λ1

λ 2

∫ + ∆Abseq
λ1

λ2

∫ (1 − e−kt )

Evaluation of change in absorbance 
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Acid-Base Equilibria 
• Brønsted Theory of Acids 

and Bases 
 Acid 
Substance which 

donates a proton 
 Base 
Accepts proton from 

another substance 
NH3 + HCl <--> NH4

+ + Cl- 

H2O + HCl <--> H3O+ + Cl- 

NH3 + H2O <--> NH4
+

 + OH- 

• Remainder of acid is base 
• Complete reaction is proton 

exchange between sets 
• Extent of exchange based on 

strength 
• Water can act as solvent and 

reactant 
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Dissociation Constants 
• Equilibrium expression for the behavior of acid 
HA + H2O <--> A- + H3O+ 

Water concentration is constant 
 
pKa=-logKa 
• Can also be measured for base 
Constants are characteristic of the particular acid or base 

 

K =
[A− ][H3O+]
[HA][H2O]

Ka = K[H2O] =
[A− ][H3O+ ]

[HA]

Acid Formula Ka 
Acetic HC2H3O2 1.8E-5 
Carbonic H2CO3 3.5E-7 
  HCO3

- 5E-11 
Phosphoric H3PO4

 7.5E-3 
  H2PO4

- 6.2E-8 
  HPO4

2- 4.8E-13 
Oxalic H2C2O4

 5.9E-2 
  HC2O4

- 6.4E-5 
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Calculations 

• 1 L of 0.1 M acetic acid has pH = 2.87 
What is the pKa for acetic acid 
CH3COOH + H2O <--> CH3COO- + H3O+

 

[CH3COO-] = [H3O+] =10-2.87 
 
 
 

 
pKa=4.73 

 

Ka =
10−(2*2.87)

0.1−10−2.87 = 1.84x10−5Ka = K[H2O] =
[A− ][H3O+ ]

[HA]
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Buffers:  Weak acids and bases  
• Weak acid or weak base with conjugate salt 
• Acetate as example 
 Acetic acid, CH3COONa 
 CH3COOH + H2O <--> CH3COO- + H3O+ 

 
 If acid is added 
hydronium reacts with acetate ion, forming 

undissociated acetic acid 
 If base is added 
Hydroxide reacts with hydronium, acetic acid 

dissociates to replace reacted hydronium ion 

large quantity huge quantity large quantity small quantity 
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Buffer Solutions 
• Buffers can be made over a large pH range 
• Can be useful in controlling reactions and separations 

 Buffer range 
Effective range of buffer 
Determined by pKa of acid or pKb of base 

HA + H2O <--> A- + H3O- 
 
 
 

Write as pH 
 
• The best buffer is when [HA]=[A-] 

 largest buffer range for the conditions 
 pH = pKa - log1 

• For a buffer the range is determined by [HA]/[A-] 
 [HA]/[A-] from 0.1 to 10 
 Buffer pH range = pKa ± 1 
 Higher buffer concentration increase durability 

Ka =
[A− ][H3O+]

[HA]
[H3O+ ] =

Ka[HA]
[A− ]

pH = pKa − log [HA]
[A−]
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Hydrolysis Constants 

• Reaction of water with metal ion 
 Common reaction 
 Environmentally important 
 Strength dependent upon metal ion oxidation state 

• 2 H2O <--> H3O+ + OH- 
 Water concentration remains constant, so for 

water: 
 Kw = [H3O+][OH-]= 1E-14 at 25°C 

• Metal ions can form hydroxide complexes with water 
• Mz+ + H2O <--> MOHz-1+ + H+ 
• Constants are listed for many metal ion with different 

hydroxide amounts 
 Database at:  

http://www.escholarship.org/uc/item/9427347g 
 

http://www.escholarship.org/uc/item/9427347g
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Thermodynamics and kinetics 

• Thermodynamic laws 
• Half-cell reactions 
• Kinetics 
• Acid-Base 
• Equilibrium calculations 
 Speciation calculation from complexation 

constants 
 

• Provide review of concepts for applications to 
radiochemistry 
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Equilibrium 
•  Reactions proceed in the forward and reverse direction 

simultaneously 
  N2 + 3 H2 <--> 2 NH3 
 Initially contains nitrogen and hydrogen 
Forward rate decreases as concentration (pressure) 

decreases 
Ammonia production increase reverse rate 
Eventually, forward rate is equal to reverse rate 
No net change in concentration 

• Reaction still occurring at equilibrium 
 Forward and backward rates equal 

• Some reactions have a negligible reverse rate 
 Proceeds in forward direction 
 Reaction is said to go to completion 
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Equilibrium:  Le Châtelier’s Principle 
• At equilibrium, no further change as long as 

external conditions are constant 
• Change in external conditions can change 

equilibrium 
 A stressed system at equilibrium will shift to 

reduce stress 
concentration, pressure, temperature 

• N2 + 3 H2 <--> 2 NH3 + 22 kcal 
  What is the shift due to 
Increased temperature? 
Increased N2? 
Reduction of reactor vessel volume? 
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• For a reaction 
 aA + bB <--> cC + dD 

• At equilibrium the ratio of the product to reactants is a 
constant 
• By convention, constants are expressed as products over 

reactants 
 Constant can change with conditions 
Temperature, ionic strength 
Conditions should explicitly provided 

• Strictly speaking, activities, not concentrations should be 
used 

 
 
 
• At low concentration, activities are assumed to be 1 
• constant can be evaluated at a number of ionic strengths and 

the overall activities fit to equations 
 

 
 
 

Equilibrium Constants 

K =
[C]c[D]d

[A]a[B]b

K =
γ C[C]c γ D[D]d

γ A[A]a γ B[B]b
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• Debye-Hückel (Physik Z., 24, 185 (1923)) 
 
ZA = charge of species A 
µ = molal ionic strength 
RA = hydrated ionic radius in Å (from 3 to 11) 

First estimation of activity 
• Debye-Hückel term can be written as: 
 
• Specific ion interaction theory  
 Uses and extends Debye-Hückel 
long range Debye-Hückel 
Short range ion interaction term 

   εij = specific ion interaction term 
 
• Pitzer 
 Binary (3) and Ternary (2) interaction parameters 
 http://en.wikipedia.org/wiki/Pitzer_equations 

Activities 

− log γ A =
0.5085Za

2 µ
1+ 0.3281RA µ

D =
0.5107 µ
1+1.5 µ

log ß(µ) = log ß(0) + ∆Zi
2D − ∆εijµ

log γ i = −Z2D + εijµ

http://en.wikipedia.org/wiki/Pitzer_equations
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Ca2+ 
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Ion Specific Interaction Theory used 

Activity data 
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Constants  
• Constants can be listed by different names 
 Equilibrium constants (K) 
Reactions involving bond breaking 

* 2 HX <--> 2H+ + X2
2- 

 Stability constants (ß), Formation constants (K) 
Metal-ligand complexation 

* Pu4+  + CO3
2-

  <--> PuCO3
2+ 

* Ligand is written in deprotonated form 
 Conditional Constants 
An experimental condition is written into equation 

* Pu4+ + H2CO3 <--> PuCO3
2+ 

 +2H+ 

Constant can vary with concentration, pH 
Must look at equation! 
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Using Equilibrium Constants 
• Constants and balanced equation can be used to evaluate 

concentrations at equilibrium 
 2 HX <--> 2H+ + X2

2- 
 K=4E-15 
 If you have one mole of HX initially, what are the 

concentration of all species at equilibrium? 
 Try to write species in terms of one unknown 
Start with species of lowest concentration 
[X2

2-]=x, [H+]=2x, [HX]=1-2x,  
 Since K is small, x must be small 
Use the approximation 1-2x ≈ 1 
Substitute x and rearrange K 

 Solve for x 
• [X2

2-]=1E-5, [H+]=2E-5 

2

2
2

2

][
][][

HX
XHK

−+

=

3
2

2

2

4
1

]2][[
]21[
]2][[ xxx

x
xxK ==

−
=

51
151

4154
3

3

−=
=−

=−

Ex
xE

xE
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Realistic Case 
• Metal ion of interest may be in complicated environment 
 May different species to consider simultaneously 

• Consider uranium in an aquifer 
 Example is still a simplified case 

• Species to consider in this example include 
 free metal ion:  UO2

2+ 
 hydroxides:  (UO2)x(OH)y 
 carbonates: UO2CO3 
 humates:  UO2HA(II), UO2OHHA(I) 

• Need to get stability constants for all species 
 Example:  UO2

2+
 + CO3

2- <--> UO2CO3 
• Know or find conditions 
 Total uranium, total carbonate, pH, total humic 

concentration 
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Stability constants for selected uranium species at 0.1 M 
ionic strength 

Species logß  
UO2 OH+ 8.5  
UO2(OH)2 17.3  
UO2(OH)3

- 22.6  
UO2(OH)4

2- 23.1  
(UO2)2OH3+ 11.0  
(UO2)2(OH)2+ 22.0  
UO2CO3 8.87  
UO2(CO3)2

2- 16.07  
UO2(CO3)3

4- 21.60 
UO2HA(II) 6.16  
UO2(OH)HA(I) 14.7±0.5  

Other species may need to be 
considered.   If total uranium 
concentration is low enough, 
binary or tertiary species can 
be excluded. 

Chemical thermodynamics of uranium:  http://www.oecd-nea.org/dbtdb/pubs/uranium.pdf 

http://www.oecd-nea.org/dbtdb/pubs/uranium.pdf
http://www.oecd-nea.org/dbtdb/pubs/uranium.pdf
http://www.oecd-nea.org/dbtdb/pubs/uranium.pdf
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Equations 
• Write concentrations in terms of species 
• Total uranium in solution, [U]tot, is the sum of all solution 

phase uranium species 
 [U]tot= UO2

2+
free+U-carb+U-hydroxide+U-humate 

 [CO3
2-]free=f(pH) 

From Henry’s constant for CO2 and K1 and K2 
from CO3H2  

log[CO3
2-]free=logKHK1K2+log(pCO2)-2log[H+] 

* With -log[H+]=pH 
log[CO3

2-]free=logKHK1K2+log(pCO2)+2pH 
 [OH-] = f(pH) 
 [HA]tot = UO2HA + UO2OHHA+ HAfree 
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Uranium speciation equations 
• Write the species in terms of metal, ligands, and constants 
 Generalized equation, with free uranium, free ligand A and 

free ligand B  
 

 
 Provide free ligand and metal concentrations as pX value 

 pX = -log[X]free
 

 pUO2
2+=-log[UO2

2+] 
• Rearrange equation with pX values 
 Include –logβxab, treat as pX term 
 [(UO2)xAaBb] = 10-(xpUO2+apA+bpB-log

xab
) 

• Specific example for (UO2)2(OH)2
2+ 

 [(UO2)2(OH)2
2+]=10-(2pUO2+2pOH-22.0) 

• Set up equations where total solution uranium concentration is 
sum of all species and solve for known terms 

bax
bax

xab BAUO
BAUO

][][][
])[(

2
2

2
+=β bax

xabbax BAUOBAUO ][][][])[( 2
22

+= β
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Speciation calculations: 
Excel spreadsheets 
CHESS Program 
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U speciation with different CO2 partial 
pressure 
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Comparison of measured and calculated 
uranyl organic colloid 
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Energy terms 
• Constants can be used to 

evaluate energetic of 
reaction 
 From Nernst equation 
∆G=-RTlnK 

 ∆G=∆H-T∆S 
-RTlnK = ∆H-T∆S 
RlnK= - ∆H/T + ∆S 

* Plot RlnK vs 1/T 

64

66

68

70

72

74

76

0.003 0.0031 0.0032 0.0033 0.0034 0.003

Temperature effect on  Np-Humate stability

162432404856

R
ln

ß

1/T (K)

Temp (°C)

²H = -22.2 ± 2.8 kJ/mol
²G

298
=-21.7 kJ/mol

²S=1.2±1.4 J/molK
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Solubility Products 

• Equilibrium involving a solid phase 
 AgCl(s) <--> Ag+ + Cl-  
 
 AgCl concentration is constant 
Solid activity and concentration is 

treated as constant 
By convention, reaction goes from solid 

to ionic phase in solution 
 Can use Ksp for calculating concentrations in 

solution 

K =
[Cl− ][Ag+ ]

[AgCl]

Ksp = K[AgCl] = [Cl− ][Ag+ ]
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Solubility calculations 

• AgCl(s) at equilibrium with water at 25°C gives 
1E-5 M silver ion in solution.  What is the Ksp?? 
 AgCl(s) <--> Ag+ + Cl-:  [Ag+] = [Cl-] 
 Ksp = 1E-52 = 1E-10 

• What is the [Mg2+]  from Mg(OH)2 at pH 10? 
  Ksp = 1.2E-11= [Mg2+] [OH]2 

 [OH] = 10-(14-10) 
 

 
 

 

[Mg2+ ] =
1.2E −11

1E − 8
= 1.2E − 3
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Solubility calculations 

• Ksp of UO2
  = 10-52.  What is the expected U4+ concentration 

at pH 6.  Generalize equation for any pH 
 Solubility reaction: 
UO2 + 2 H2OU(OH)4  U4+ + 4 OH- 

 Ksp= [U4+][OH-]4 
 [U4+]= Ksp /[OH-]4 

pOH + pH =14 
At pH 6, pOH = 8, [OH-]=10-8 

 [U4+]= 10-52
 /[10-8]4= 10-52

 /10-32 = 10-20 M 
 For any pH 

[U4+]= 10-52
 /[10-(14-pH)*4]  

Log [U4+]= -52+((14-pH)*4) 
 



2-47 

Limitations of Ksp 

• Solid phase formation limited by concentration 
 below ≈1E-5/mL no visible precipitate forms 
colloids 

• formation of supersaturated solutions 
 slow kinetics 

• Competitive reactions may lower free ion concentration 
• Large excess of ligand may form soluble species 
 AgCl(s) + Cl- <--> AgCl2

-(aq) 
Ksp  really best for slightly soluble salts 



2-48 

Overview 
• Understand heats of reactions 
 Enthalpy, entropy, Gibbs free energy 
 Reaction data from constituents 

• Understand half-cell reactions 
 Nernst Equation 

• Kinetics 
 Influence of reaction conditions 

• Equilibrium and constants 
 Use to develop a speciation spreadsheet 
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Questions 

• What is the difference between 1st and 2nd order 
kinetics? 

• What can impact reaction rates? 
• How can a compound act as a base and acid?  

Provide an example. 
• What does the dissociation constant of an acid 

provide? 
• Provide the speciation of acetic acid at pH 3.5, 4.5, 

and 5.5. 
• What are the species from carbonic acid at pH 4.0, 

6.0, and 8.0? 
• Set up the equations to describe the speciation of 

uranyl, the uranyl monocarbonate, and the uranyl 
dicarbonate.   
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Questions 

• Comment in blog 
• Respond to PDF questions 
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