Thermodynamics and kinetics

- Thermodynamic laws
- Half-cell reactions
- Kinetics
- Acid-Base
- Equilibrium calculations
 - Speciation calculation from complexation constants
- Provide review of concepts for applications to radiochemistry

Thermodynamic terms

- Heat Capacity (C_p)
 - Heat required to raise one gram of substance 1 °C
 - Al; C_p = 0.895 J/gK
 →1 cal = 4.184 J
 - What is the heat needed to increase 40 g of Al by 10 K
 - (0.895 J/gK)(40g)(10K)= 358 J
- Exothermic
 - Reaction produces heat (at 25 °C)
 - $C(s) + O_2(g) < --> CO_2(g) + 393.76 \text{ kJ}$

Fig. 2. Comparison of experimental and calculated heat capacity of UO_2 .

Thermodynamic terms

Fig. 1. Measured values of $H_T^0 - H_{298,15}^0$ for UO₂ and the equations to fit these data.

Enthalpy (ΔH)

- Bond energies
 - Can be used to estimate ΔH
 - $N_2 + 3 H_2 < --> 2 NH_3$
 - 6(351.5)-945.6-3(436.0) = -144.6 kJ/2 mole
 - =-72.3 kJ/mole (actual -46.1 kJ/mol)
- Aqueous Ions (use ∆H values, databases available for different states)

	-			
	letermina	ition		Standard Solution
			Ag+	105.579
			AgCl ₂ -	-245.2
			$Ag(NH_3)^{2+}$	-111.29
	ΔH_{T2}			-1285.7
Reactants at T₂		→ Products a	$Ag(3_2O_3)_2$ Al ³⁺	-531
			Br-	-121.55
•		1		
			BrO ₃ -	-67.07
			Ca ²⁺	-542.83
			Cd^{2+}	-75.9
			$Cd(CN)_4^{2-}$	428
	$-(\Sigma C)(T 200)$ $AH = -=$	$(\Sigma C_p)(298-T_2)$	$Cd(NH_3)_4^{2+}$	-450.2
Δ Π reactants	$= (\Sigma C_p)(T_2 - 298) \qquad \Delta H_{\text{products}} =$	$(2C_p)(270 + 2)$	Ce ³⁺	-696.2
			Ce^{4+}	-537.2
			CH ₃ COO-	-486.01
			CH ₃ COOH	-485.76
			CN-	150.6
		*	CN- CNS-	76.44
	ΔH_{298}	D d		
Reactants at 298 K		Products at 298		-167.15
			ClO ₄ -	-129.33
ΣC is the	and of the heat	aanaaitiaa	CO ₂	-413.8
ΔC_n is the	sum of the heat	capacities	CO_{3}^{2} -	-677.14
p		-	H+	0
	Pure substance		H_2O_2	-191.17
	I ule substance		I-	-55.19
$CaC_2O_4(c)$	-1360.6		I ₃ -	-51.5
$CaF_2(c)$	-1219.6		IO ₃ -	-221.3
$Ca_3(PO_4)_2(c)$	-4109.9		K+	-252.38
CaSO4(c,anhydr			NH ₃	-80.29
Cd(g)	2623.54		NH ₄ +	-132.51
$Cd^{2+}(g)$	112.01		NO ₃ -	-205
$Cd(OH)_2(c)$	-560.7		No ₃ - Na+	-240.12
CdS(c)	-161.9			
	121.679		OH-	-229.99
Cl(g)			O ₂	-11.7
Cl-(g)	-233.13		SO_4^2 -	-909.27
$ClO_2(g)$	102.5		Sn ²⁺	-8.8
Cu(g)	338.32		Sr^{2+}	-545.8
Cu ₂ O(c,cuprite)	-168.6		T1 ³⁺	196.6
CuO(c,tenorite)	-157.3		U^{4+}	-591.2
$Cu(OH)_2(c)$	-449.8		UO_{2}^{2+}	-1019.6
Cu2S(c,chalcocit	te) -79.5		2	
CuS(c,covellite)				
F(g)	78.99			2-5
F(g)	-255.39			
Fe(g)	416.3			
10(8)	+10.5			

Entropy (\DeltaS) and Gibbs Free Energy (\DeltaG)

- Randomness of a system
 - increase in ΔS tends to be spontaneous
- Enthalpy and Entropy can be used for evaluating the free energy of a system
- Gibbs Free Energy
 - $\Delta \mathbf{G} = \Delta \mathbf{H} \mathbf{T} \Delta \mathbf{S}$
 - △G=-RTlnK
 - \rightarrow K is equilibrium constant
 - \rightarrow Activity at unity

Compound	ΔG° (kJ/mol) at 298.15 K
H ₂ O	-237.129
OH ⁻ (aq)	-157.244
H ⁺ (aq)	0
× #/	$H_2O \leftrightarrow H^+ + OH^-$

- What is the constant for the reaction?
 - \rightarrow Products-reactants
- At 298.15 K

 $\Delta G(rxn) = 0 + -157.244 - (-273.129) = 79.9 \text{ kJ/mol}$ lnK= (79.9E3/(-8.314*298.15))=-32.2; K=1E-14, K_w = [H⁺][OH⁻] > 6

Thermodynamic Laws

- 1st law of thermodynamics
 - Energy is conserved in a system
 →Can be changed or transferred
 - Heat and work are energy transfer
 →∆E = q (heat absorbed) + w (work)
- 2nd law of thermodynamics
 - Reactions tend towards equilibrium
 - →Increase in entropy of a system
 - Spontaneous reaction for $-\Delta G$ $\rightarrow \Delta G = 0$, system at equilibrium
- 3rd law of thermodynamics
 - Entropies of pure crystalline solids are zero at 0 K
 - Defines absolute zero

Redox Reactions: Faraday Laws

- In 1834 Faraday demonstrated quantities of chemicals which react at electrodes are directly proportional to charge passed through the cell
 - 96487 Coulomb (C) is the charge on 1 mole of electrons = 1F (faraday)
- Cu(II) is electrolyzed by a current of 10 A (C/s) for 1 hr between Cu electrode
 - How much Cu reacts
- anode: Cu <--> Cu²⁺ + 2e⁻
- cathode: Cu²⁺ + 2e⁻ <--> Cu
 - Number of electrons
 - \rightarrow 2 from redox reaction
 - * (10A)(3600 sec)/(96487 C/mol) = 0.373 F
 - * 0.373 mole e⁻ (1 mole Cu/2 mole e⁻) = 0.186 mole Cu

Half-cell potentials

- Standard potential
 - Defined as $\varepsilon^{\circ}=0.00$ V for

 \rightarrow H₂(atm) <--> 2 H⁺ (1.000M) + 2e⁻

- Other reactions compared to H₂
- Cell reaction for
 - Zn and Fe^{3+/2+} at 1.0 M
 - Write as reduction potentials

 \rightarrow Fe³⁺ + e⁻ <--> Fe²⁺ ϵ° =0.77 V

 \rightarrow Zn²⁺ + 2e⁻ <-->Zn ϵ° =-0.76 V

* Reduction potentials are available <u>http://www.csudh.edu/oliver/chemdata/data-</u> <u>e.htm</u>

- Reduction potential for Fe³⁺ is larger
 - Fe³⁺ is reduced, Zn is oxidized in reaction

Half-Cell Potentials

- Overall balanced equation
 - $2Fe^{3+} + Zn \iff 2Fe^{2+} + Zn^{2+} \epsilon^{\circ} = 0.77 + 0.76 = 1.53 V$
- Use standard reduction potential
- Half cell potential values are <u>not</u> multiplied
 - ϵ° is for a mole of electrons

Application of Gibbs Free Energy

• If work is done by a system

• $\Delta \mathbf{G} = -\boldsymbol{\varepsilon}^{\circ} \mathbf{n} \mathbf{F} \ (\mathbf{n} = \mathbf{e}^{-})$

- Find ΔG for Zn/Cu cell at 1.0 M
 - $Cu^{2+} + Zn \iff Cu + Zn^{2+} \epsilon^{\circ} = 1.10 V$
 - 2 moles of electrons (n=2) $\rightarrow \Delta G = -2(96487 \text{C/mole e})(1.10 \text{V})$ $\rightarrow \Delta G = -212 \text{ kJ/mol}$

Nernst Equation

- Compensated for non unit activity (not 1 M)
- Relationship between cell potential and activities
- $aA + bB + ne^{-} < --> cC + dD$

$$\varepsilon = \varepsilon^{\circ} - \frac{2.30\text{RT}}{\text{nF}} \log \frac{[\text{C}]^{c}[\text{D}]^{d}}{[\text{A}]^{a}[\text{B}]^{b}}$$

- At 298K 2.3RT/F = 0.0592
- What is potential of an electrode of Zn(s) and 0.01 M Zn^{2+}
- $Zn^{2+} + 2e^{-} < --> Zn \quad \epsilon^{\circ} = -0.763 V$
- activity of metal is 1

$$\varepsilon = -0.763 - \frac{0.0592}{2} \log \frac{1}{0.01} = -0.822 \text{V}$$

Kinetics and Equilibrium

- Kinetics and equilibrium important concepts in examining and describing chemistry
 - Identify factors which determine rates of reactions
 - \rightarrow Temperature, pressure, reactants, mixing
 - Describe how to control reactions
 - Explain why reactions fail to go to completion
 - Identify conditions which prevail at equilibrium
- Rate of reaction
 - Can depend upon conditions
- Free energy does not dictate kinetics
 - Thermodynamics can be decoupled from kinetics
- Thermodynamics concerned with difference between initial and final state
- Kinetics account for reaction rates and describe the conditions and mechanisms of reactions
 - difficult to describe from first principles
- General factors effecting kinetics
 - Nature of reactants
 - Effective concentrations
 - Temperature
 - Presence of catalysts
 - Number of steps

Nature of Reactants

- Ions react rapidly
 - Ag⁺ + Cl⁻ <--> AgCl(s) Very fast
- Reactions which involve bond breaking are slower
 - $NH_4^+ + OCN^- < -->OC(NH_2)_2$
- Redox reactions in solutions are slow
 - Transfer of electrons are faster than those of atomic transfer
- Reactions between covalently bonded molecules are slow
 - 2 HI(g) <--> H₂(g) + I₂(g)
- Structure
 - Phosphorus (white and red)
- Surface area
 - larger surface area increases reaction
- Mixing increases interaction

Rate Law

- **Concentration of reactant or product per unit time**
- Effect of initial concentration on rate can be examined
 - rate = $k[A]^x[B]^y$
 - rate order = x + y
 - knowledge of order can help control reaction
 - rate must be experimentally determined

Rate=k[A]ⁿ; A=conc. at time t, A_o=initial conc., X=product conc. **Order** rate equation

$$0 [A_0]-[A]=kt, [X]=kt$$

1
$$\ln[A_0]-\ln[A]=kt, \ln[A_0]-\ln([A_0]-[X])=kt$$
 1/sec
2 $\frac{1}{[A]}-\frac{1}{[A_0]}=kt$ $\frac{1}{[A_0]-[X]}-\frac{1}{[A_0]}=kt$ L/mole sec

3
$$\frac{1}{[A]^2} - \frac{1}{[A_0]^2} = \frac{kt}{2} \frac{1}{([A_0] - [X])^2} - \frac{1}{[A_0]^2} = \frac{kt}{2} \frac{L^2}{mole_{2-14}^2}$$

Rate Law

- Temperature
 - Reactions tend to double for every 10 °C
- Catalysts
 - Accelerate reaction but are not used
 →Pt surface
 - Thermodynamically drive, catalysts drive kinetics
 - If not thermodynamically favored, catalysts will not drive reaction
- Autocatalytic reactions form products which act as catalysts

Complexation Kinetics

Uranium and cobalt with pyridine based ligands

Examine complexation by UV-Visible spectroscopy Absorbance sum from 250 nm to 325 nm for 111Py12 and uranium at pH 4

Kinetic Data Evaluation

Evaluation of change in absorbance

$$\int_{\lambda_{1}}^{\lambda_{2}} Abs_{t} = \int_{\lambda_{1}}^{\lambda_{2}} Abs_{o} + \int_{\lambda_{1}}^{\lambda_{2}} \Delta Abs_{eq} (1 - e^{-kt})$$

Evaluation of absorbance and kinetic data for 111Py12 and 111Py14 with uranium at pH 4. The concentration of ligand and uranium is 50x10⁻⁶ mol/L.

Ligand	Abs _o	ΔAbs_{eq}	k (min ⁻¹)	95% Equilibrium
		1		Time (min)
111Py12	7.86 ± 0.82	5.66 ± 1.28	4.65±0.47x10 ⁻⁵	$6.44 \pm 0.65 \times 10^4$
111Py14	4.82 ± 1.70	7.06 ± 5.76	4.24±0.80x10-5	$7.07 \pm 1.33 \times 10^4$

Acid-Base Equilibria

- **Brønsted Theory of Acids** and Bases
- Acid **Conjugate Acid** HClO₄ \rightarrow Substance which H₂SO₄ donates a proton Acid HCI Base Strength H_3O^+ H_2SO_3 \rightarrow Accepts proton from HF another substance HC₂H₃O₂ $NH_3 + HCl < --> NH_4^+ + Cl^-$ HSO₂- $H_2O + HCl <--> H_3O^+ + Cl^-$ H₂S NH_4^+ $NH_3 + H_2O <--> NH_4^+ + OH^-$ HCO₃ **Remainder of acid is base H₂O** HS-**Complete reaction is proton** OH exchange between sets Η,
- **Extent of exchange based on** strength
- Water can act as solvent and reactant

1	Conjugate	Base
	ClO ₄	
	SO4 ²⁻	D
	Cl	Bas
	H ₂ O	Stre
	HSO ₃ -	
	F -	
	$C_2H_3O_2^-$	
	SO ₃ ²⁻	
	HS-	
	NH ₃	
	CO_{3}^{2}	
	OH-	
	S ²⁻	
	O ²⁻	

H

Strength

Base

Dissociation Constants

• Equilibrium expression for the behavior of acid HA + H₂O <--> A⁻ + H₃O⁺ $K = \frac{1}{K}$

Water concentration is constant

$$K = \frac{[A^{-}][H_{3}O^{+}]}{[HA][H_{2}O]}$$

2 - 19

$$K_a = K[H_2O] = \frac{[A^-][H_3O^+]}{[HA]}$$

• Can also be measured for base

pK_a=-logK_a

Constants are characteristic of the particular acid or base

Acid	Formula	K _a
Acetic	$HC_2H_3O_2$	1.8E-5
Carbonic	H ₂ CO ₃	3.5E-7
	HCO ₃ -	5E-11
Phosphoric	H ₃ PO ₄	7.5E-3
	$H_2PO_4^-$	6.2E-8
	HPO ₄ ²⁻	4.8E-13
Oxalic	$H_2C_2O_4$	5.9E-2
	$HC_2O_4^-$	6.4E-5

Calculations

• 1 L of 0.1 M acetic acid has pH = 2.87What is the pK_a for acetic acid $CH_3COOH + H_2O < --> CH_3COO^- + H_3O^+$ $[CH_3COO^-] = [H_3O^+] = 10^{-2.87}$

$$K_a = K[H_2O] = \frac{[A^-][H_3O^+]}{[HA]}$$
 $K_a = \frac{10^{-(2*2.87)}}{0.1 - 10^{-2.87}} = 1.84 \times 10^{-5}$

pK_a=4.73

Buffers: Weak acids and bases

- Weak acid or weak base with conjugate salt
- Acetate as example
 - Acetic acid, CH₃COONa
 - $CH_3COOH + H_2O \iff CH_3COO^- + H_3O^+$

large quantity huge quantity large quantity small quantity

If acid is added

→hydronium reacts with acetate ion, forming undissociated acetic acid

If base is added

→Hydroxide reacts with hydronium, acetic acid dissociates to replace reacted hydronium ion

Buffer Solutions

- Buffers can be made over a large pH range
- Can be useful in controlling reactions and separations
 - Buffer range

→Effective range of buffer

 \rightarrow Determined by pK_a of acid or pK_b of base

 $\mathbf{HA} + \mathbf{H}_2\mathbf{O} < --> \mathbf{A}^- + \mathbf{H}_3\mathbf{O}^-$

$$[H_3O^+] = \frac{K_a[HA]}{[A^-]}$$

Write as pH

 $K_a = \frac{[A^-][H_3O^+]}{[HA]}$

$$pH = pK_a - \log\frac{[HA]}{[A^-]}$$

- The best buffer is when [HA]=[A⁻]
 - largest buffer range for the conditions
 - $pH = pK_a log1$
- For a buffer the range is determined by [HA]/[A⁻]
 - [HA]/[A⁻] from 0.1 to 10
 - Buffer pH range = pK_a ± 1
 - Higher buffer concentration increase durability

Hydrolysis Constants

- Reaction of water with metal ion
 - Common reaction
 - Environmentally important
 - Strength dependent upon metal ion oxidation state
- $2 H_2 O <--> H_3 O^+ + OH^-$
 - Water concentration remains constant, so for water:
 - $K_w = [H_3O^+][OH^-] = 1E-14 \text{ at } 25^\circ C$
- Metal ions can form hydroxide complexes with water
- $M^{z+} + H_2O <--> MOH^{z-1+} + H^+$
- Constants are listed for many metal ion with different hydroxide amounts
 - Database at: <u>http://www.escholarship.org/uc/item/9427347g</u>

Thermodynamics and kinetics

- Thermodynamic laws
- Half-cell reactions
- Kinetics
- Acid-Base
- Equilibrium calculations
 - Speciation calculation from complexation constants
- Provide review of concepts for applications to radiochemistry

Equilibrium

- Reactions proceed in the forward and reverse direction simultaneously
 - $N_2 + 3 H_2 < --> 2 NH_3$
 - Initially contains nitrogen and hydrogen
 - →Forward rate decreases as concentration (pressure) decreases
 - →Ammonia production increase reverse rate
 - →Eventually, forward rate is equal to reverse rate
 - \rightarrow No net change in concentration
- Reaction still occurring at equilibrium
 - Forward and backward rates equal
- Some reactions have a negligible reverse rate
 - Proceeds in forward direction
 - Reaction is said to go to completion

Equilibrium: <u>Le Châtelier's Principle</u>

- At equilibrium, no further change as long as external conditions are constant
- Change in external conditions can change equilibrium
 - A stressed system at equilibrium will shift to reduce stress
 - →concentration, pressure, temperature
- $N_2 + 3 H_2 < --> 2 NH_3 + 22 kcal$
 - What is the shift due to
 - →Increased temperature?
 - \rightarrow Increased N₂?
 - →Reduction of reactor vessel volume?

Equilibrium Constants

- For a reaction
 - **aA** + **bB** <--> **cC** + **dD**
- At equilibrium the ratio of the product to reactants is a constant
 - By convention, constants are expressed as products over reactants
 - Constant can change with conditions

 → Temperature, ionic strength
 → Conditions should explicitly provided

• Strictly speaking, activities, not concentrations should be used

$$K = \frac{\gamma_{C}[C]^{c} \gamma_{D}[D]^{a}}{\gamma_{A}[A]^{a} \gamma_{B}[B]^{b}}$$

- At low concentration, activities are assumed to be 1
- constant can be evaluated at a number of ionic strengths and the overall activities fit to equations

Activities

• Debye-Hückel (Physik Z., 24, 185 (1923))

- Binary (3) and Ternary (2) interaction parameters
 http://op.wikipedia.org/wiki/Ditger_equations
- http://en.wikipedia.org/wiki/Pitzer_equations

Activity data

Debye Huckel estimates of activity for common clay ions in chloride solutions of various ionic strength at 15° C

Constants

- Constants can be listed by different names
 - Equilibrium constants (K)
 - \rightarrow Reactions involving bond breaking

* 2 HX <--> $2H^+ + X_2^{2-}$

- Stability constants (B), Formation constants (K)
 - →Metal-ligand complexation
 - $* Pu^{4+} + CO_3^{2-} <--> PuCO_3^{2+}$
 - * Ligand is written in deprotonated form
- Conditional Constants
 - →An experimental condition is written into equation * Pu⁴⁺ + H₂CO₃ <--> PuCO₃²⁺ +2H⁺

%Constant can vary with concentration, pH

Must look at equation!

Using Equilibrium Constants

- Constants and balanced equation can be used to evaluate concentrations at equilibrium $[H^+]^2[X_2^{-}]$
 - 2 HX <--> $2H^+ + X_2^{2-}$
 - K=4E-15

Solve for x

 $[X_{2}^{2}]=1E-5, [H^{+}]=2E^{+}5$

- If you have one mole of HX initially, what are the concentration of all species at equilibrium?
- Try to write species in terms of one unknown
 →Start with species of lowest concentration
 →[X₂²⁻]=x, [H⁺]=2x, [HX]=1-2x, [x][2x]²
- Since K is small, x must be small \rightarrow Use the approximation $1-2x \approx 1$ \rightarrow Substitute x and rearrange K 4E-1

$$K = \frac{[x][2x]^2}{[1-2x]^2} = \frac{[x][2x]^2}{1} = 4x$$

$$4E - 15 = 4x^{3}$$
$$1E - 15 = x^{3}$$
$$x = 1E - 5$$

Realistic Case

- Metal ion of interest may be in complicated environment
 - May different species to consider simultaneously
- Consider uranium in an aquifer
 - Example is still a simplified case
- Species to consider in this example include
 - free metal ion: UO₂²⁺
 - hydroxides: (UO₂)_x(OH)_y
 - carbonates: UO₂CO₃
 - humates: UO₂HA(II), UO₂OHHA(I)
- Need to get stability constants for all species
 - Example: $UO_2^{2+} + CO_3^{2-} < --> UO_2CO_3$
- Know or find conditions
 - Total uranium, total carbonate, pH, total humic concentration

Stability constants for selected uranium species at 0.1 M ionic strength

Species	logß
$UO_2 OH^+$	8.5
$UO_2(OH)_2$	17.3
$UO_2(OH)_3$	22.6
$UO_2(OH)_4^{2-}$	23.1
$(UO_2)_2OH^{3+}$	11.0
$(UO_2)_2(OH)^{2+}$	22.0
UO ₂ CO ₃	8.87
$UO_2(CO_3)_2^{2-}$	16.07
UO ₂ (CO ₃) ₃ ⁴⁻	21.60
UO ₂ HA(II)	6.16
UO ₂ (OH)HA(I)	14.7±0.5

Other species may need to be considered. If total uranium concentration is low enough, binary or tertiary species can be excluded.

Equations

- Write concentrations in terms of species
- Total uranium in solution, [U]_{tot}, is the sum of all solution phase uranium species
 - [U]_{tot} = UO₂²⁺_{free}+U-carb+U-hydroxide+U-humate
 - $[CO_3^2]_{\text{free}} = f(pH)$
 - →From Henry's constant for CO₂ and K₁ and K₂ from CO₃H₂
 - $\rightarrow \log[CO_3^{2-}]_{free} = \log K_H K_1 K_2 + \log(pCO_2) 2\log[H^+]$ * With -log[H⁺]=pH
 - $\rightarrow \log[CO_3^{2-}]_{\text{free}} = \log K_H K_1 K_2 + \log(pCO_2) + 2pH$
 - $[OH^-] = f(pH)$
 - $[HA]_{tot} = UO_2HA + UO_2OHHA + HA_{free}$

Uranium speciation equations

- Write the species in terms of metal, ligands, and constants
 - Generalized equation, with free uranium, free ligand A and free ligand B

$$\beta_{xab} = \frac{[(UO_2)_x A_a B_b]}{[UO_2^{2+}]^x [A]^a [B]^b}$$

$$[(UO_2)_x A_a B_b] = \beta_{xab} [UO_2^{2+}]^x [A]^a [B]^b$$

Provide free ligand and metal concentrations as pX value

$$\rightarrow$$
 pX = -log[X]_{free}

$$\rightarrow$$
 pUO₂²⁺=-log[UO₂²⁺]

- Rearrange equation with pX values
 - Include $-\log\beta_{xab}$, treat as pX term
 - $[(UO_2)_xA_aB_b] = 10^{-(xpUO2+apA+bpB-log_{xab})}$
- Specific example for $(UO_2)_2(OH)_2^{2+}$

• $[(UO_2)_2(OH)_2^{2+}]=10^{-(2pUO2+2pOH-22.0)}$

• Set up equations where total solution uranium concentration is sum of all species and solve for known terms 2-35

Speciation calculations: Excel spreadsheets CHESS Program
X Fi	2 1 e	• (° Home	l ↓ Insert	Page Lay			: (1) [Con Review	npatibili View		Microsoft Excel			. □ X 3 - ₽ ×
Image Break Preview Image Break Preview Imag							om to	New W Arrang Freeze	e All	CC Save Workspace	Switch ce Windows *	Macros	
Workbook Views						Zoom Window Macros							
	F7 ▼ (= f _x 4												
- 41	A	Α	В	C	D	E	F	G	Н	L.	J	K	L
1				pka1co3		<i>_</i>		рКw	UO2HA	UO2OHHA	UO2OH	UO2(OH)2	UO2(OH)3
2				6.3	0 10.2	25 -17.55		13.92	logB1100	logB11-10	~	logK10-20	logk10-30
3									6.16	14.70	-5.40	-10.50	-19.20
4			~~~		111 • (11) 11	1 10001				0.000		(1)(0)(0)	(1)(0)(0)
	pH	pH	pp CO2	[UO2]t M		ot p[CO3]f	pHA(II)		[UHA(II)]	[UOHHA(I)]		[U(OH)2]	[U(OH)3]
6	1.0		3.50E-04										
7 8	1.1	1.1	3.50E-04 3.50E-04				4.00		1.45E-05		5.01E-12 6.31E-12		1.26E-28 2.51E-28
9	1.2		3.50E-04				4.00		1.45E-05 1.45E-05		7.94E-12		5.01E-23
10	1.4		3.50E-04						1.45E-05		1.00E-11	2.00E-15	1.00E-22
11	1.4	1.4	3.50E-04				4.00		1.45E-05		1.26E-11	3.16E-15	
12	1.6	1.6	3.50E-04				4.00		1.45E-05			5.01E-15	
13	1.7		3.50E-04				4.00		1.45E-05		2.00E-11	7.94E-15	7.94E-22
14	1.8	· · · · · · · · · · · · · · · · · · ·	3.50E-04				4.00		1.45E-05		2.51E-11	1.26E-14	1.58E-21
15	1.9		3.50E-04				4.00	1.1	1.45E-05	a sea our some set and		2.00E-14	3.16E-21
16	2.0	2.0					4.00		1.45E-05			3.16E-14	6.31E-21
17	2.1	2.1	3.50E-04						1.45E-05			5.01E-14	1.26E-20
18	2.2	2.2	3.50E-04	2.00E-0	7 3.00E-0	04 16.61	4.00	7.00	1.45E-05	1.91E-08	6.31E-11	7.94E-14	2.51E-20
19	2.3	2.3	3.50E-04	2.00E-0	7 3.00E-0	04 16.41	4.00	7.00	1.45E-05	2.40E-08	7.94E-11	1.26E-13	5.01E-2(🗸
14 4		4		1									•
Read	ly 🛅										100%	Θ(· + .
_				-	-	-	-	-				2-	31

X Fi	le of	• C ^a Home	r ↓ Insert	Page Lay		.035%CC	1. A 1999	(1) [Con Review		- 100 M	Microsoft Excel			. □ X
Normal Rage Layout Workbook Views						Zoom	Image All Image							
	D	6	- (-		f _x 0	.0003								~
- 21	A	Α	В	С		D	E	F	G	Н	E.	J	K	L 📮
1 2				pka1co3 6.3		2co3 10.25	logksum -17.55		pKw 13.92	UO2HA logB1100	UO2OHHA logB11-10	UO2OH logK10-10	UO2(OH)2 logK10-20	UO2(OH)3 logk10-30
3										6.16	14.70	-5.40	-10.50	-19.20
5	рН	pН	pp CO2	[UO2]t M	•		p[CO3]f	pHA(II)		[UHA(II)]			[U(OH)2]	[U(OH)3]
6	1.0	1.0	3.50E-04 3.50E-04			00E-04 00E-04	19.01	4.0			1.21E-09 1.52E-09			6.31E-24 1.26E-23
7 8	1.1		3.50E-04			00E-04	18.81 18.61	4.0 4.0						2.51E-23
9	1.3		3.50E-04			00E-04	18.41	4.0			2.40E-09	7.94E-12		5.01E-23
10	1.4		3.50E-04			00E-04	18.21	4.0			3.03E-09		2.00E-15	1.00E-22
11	1.5	1.5		2.00E-0		00E-04	18.01	4.0			3.81E-09		3.16E-15	
12	1.6	1.6	3.50E-04	2.00E-0	7 3.	00E-04	17.81	4.0	0 7.00	1.45E-05	4.80E-09	1.58E-11	5.01E-15	3.98E-22
13	1.7	1.7	3.50E-04	2.00E-0	7 3.	00E-04	17.61	4.0	0 7.00	1.45E-05	6.04E-09	2.00E-11	7.94E-15	7.94E-22
14	1.8	1.8	3.50E-04	2.00E-0	7 3.	00E-04	17.41	4.0	0 7.00	1.45E-05	7.60E-09	2.51E-11	1.26E-14	1.58E-21
15	1.9	1.9	3.50E-04	2.00E-0	7 3.	00E-04	17.21	4.0	0 7.00	1.45E-05	9.57E-09		2.00E-14	3.16E-21
16	2.0	2.0	3.50E-04	2.00E-0		00E-04	17.01	4.0		1.45E-05	1.21E-08		3.16E-14	6.31E-21
17	2.1	2.1	3.50E-04	2.00E-0		00E-04	16.81	4.0			1.52E-08		5.01E-14	1.26E-20
18	2.2		3.50E-04			00E-04	16.61	4.0			1.91E-08		7.94E-14	2.51E-20
19	2.3	2.3	3.50E-04	2.00E-0	7 3.	00E-04	16.41	4.0	0 7.00	1.45E-05	2.40E-08	7.94E-11	1.26E-13	5.01E-2(-
4 ∢		4	111	j.										•
Read	iy 🛅											100%	Θ[÷.,,
														2-38

Normal Page Break Preview I Custom Views Page Layout I Full Screen Workbook Views				Zoom 100% Zoom to			New Window Arrange All Freeze Panes * Window Window				Macros Macros			
	F5	•	(*	fx 1										
1	А	В	С	D	E	F	G	Н	I	J	K	L	M	
9	nH	(Fel	(Oxalate)	nМ	nl	Fel	FeOH	Fe(OH)2	Fe(OH)3	Fe(OH)4	Fe2(OH)2	Fe3(OH)4	LH2	1
1														
2	К						-2.19							
3	ß	pkw				7.65	11.73							
4	Fe	13.92				1	1		1		2			
5	Oxalate					1	0		_	-	-			
6	Н					0	0			-	_			
7	ОН					0	1	2	3	4	2	4	0	
8								= (0,1)0	= (0,1)0	= (=)))	=	=		
9	pН	[Fe]	[Oxalate]	рМ	pL	FeL	FeOH	· · ·	· /	· /	Fe2(OH)2	· · ·	LH2	L
10		3.00E-05			7.56				1.30E-14		1.90E-11		1.75E-05	
11	1.1	0.002.00	4.50E-05				8.90E-07			6.91E-23	2.13E-11		1.48E-05	
12	1.2		4.50E-05		7.31			4.88E-09			2.33E-11		1.23E-05	
13	1.3		and the second sec	 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	7.19	and the second second second second	and the second second second	6.37E-09	and the second second second	server and the server of the	2.50E-11	and an experiment of the	1.02E-05	
14	1.4				7.08			8.23E-09			2.64E-11		8.40E-06	
15 16	1.5		4.50E-05 4.50E-05		6.96	2.40E-05	1.01E-06			1.24E-21	2.75E-11		6.86E-06	
10	1.0		4.50E-05		6.85	2.50E-05 2.57E-05	1.03E-06		2.52E-13		2.84E-11 2.91E-11		5.57E-06 4.51E-06	
18		3.00E-05				2.64E-05					2.91E-11 2.96E-11		4.51E-06 3.63E-06	
10 • •		peccalc fee	-		0.04	2.04E-00	1.00E-00	2.19E-00	0.47E-13	1.03E-20	2.902-11	1.50E-10	0.00E-00	

U speciation with different CO₂ partial pressure

Comparison of measured and calculated uranyl organic colloid

Aain solution Solids	acted in Cost of Cost and	abase Output Piper JPlot						
quantity		species	value	unit	Temperature:	25	C	•
					Volume:	1.0	[•
					Time:		sec	•
					Density:	🔘 fix) fr	ree
						1000.0	g/l	
					Balance on:	disabled		8.
	📑 add	🗘 edit	import					
Redox state				Activity-correctio	n models			
	in the second se		1	Solvent:	none		•]	
	 disabled 	all		Species:	truncated-day	ies	-	

Energy terms

- Constants can be used to evaluate energetic of reaction
 - From Nernst equation $\rightarrow \Delta G = -RT \ln K$
 - $\Delta G = \Delta H T \Delta S$

 \rightarrow -RTlnK = \triangle H-T \triangle S

 \rightarrow RlnK= - Δ H/T + Δ S

* Plot RlnK vs 1/T

Solubility Products

- Equilibrium involving a solid phase
 - $AgCl(s) \le Ag^+ + Cl^-$

$$K = \frac{[Cl^-][Ag^+]}{[AgCl]}$$

- AgCl concentration is constant
 →Solid activity and concentration is treated as constant
 - →By convention, reaction goes from solid to ionic phase in solution
- Can use K_{sp} for calculating concentrations in solution

$$K_{sp} = K[AgCl] = [Cl^{-}][Ag^{+}]$$

Solubility calculations

- AgCl(s) at equilibrium with water at 25°C gives 1E-5 M silver ion in solution. What is the K_{sp}??
 - $AgCl(s) < --> Ag^+ + Cl^-: [Ag^+] = [Cl^-]$

•
$$K_{sp} = 1E-5^2 = 1E-10$$

- What is the [Mg²⁺] from Mg(OH)₂ at pH 10?
 - $K_{sp} = 1.2E-11 = [Mg^{2+}][OH]^2$
 - [OH] = 10⁻⁽¹⁴⁻¹⁰⁾

$$[Mg^{2+}] = \frac{1.2E - 11}{1E - 8} = 1.2E - 3$$

- K_{sp} of UO₂ = 10⁻⁵². What is the expected U⁴⁺ concentration at pH 6. Generalize equation for any pH
 - Solubility reaction: $\rightarrow UO_2 + 2 H_2O \leftarrow U(OH)_4 \leftarrow \rightarrow U^{4+} + 4 OH^{-1}$
 - $K_{sp} = [U^{4+}][OH^{-}]^{4}$

For any pH

- $[U^{4+}] = K_{sp} / [OH^{-}]^4$
 - \rightarrow pOH + pH = 14
 - \rightarrow At pH 6, pOH = 8, [OH⁻]=10⁻⁸

 \rightarrow [U⁴⁺]= 10⁻⁵²/[10^{-(14-pH)*4}]

 \bigcirc Log [U⁴⁺]= -52+((14-pH)*4)

- $[U^{4+}] = \frac{10^{-52}}{[10^{-8}]^4} = \frac{10^{-52}}{10^{-32}} = \frac{10^{-20}}{10^{-32}}$ M

2-46

Limitations of K_{sp}

- Solid phase formation limited by concentration
 - below ≈1E-5/mL no visible precipitate forms
 →colloids
- formation of supersaturated solutions
 - slow kinetics
- Competitive reactions may lower free ion concentration
- Large excess of ligand may form soluble species
 - $AgCl(s) + Cl^{-} < --> AgCl_{2}(aq)$

 \underline{K}_{sp} really best for slightly soluble salts

Overview

- Understand heats of reactions
 - Enthalpy, entropy, Gibbs free energy
 - Reaction data from constituents
- Understand half-cell reactions
 - Nernst Equation
- Kinetics
 - Influence of reaction conditions
- Equilibrium and constants
 - Use to develop a speciation spreadsheet

Questions

- What is the difference between 1st and 2nd order kinetics?
- What can impact reaction rates?
- How can a compound act as a base and acid? Provide an example.
- What does the dissociation constant of an acid provide?
- Provide the speciation of acetic acid at pH 3.5, 4.5, and 5.5.
- What are the species from carbonic acid at pH 4.0, 6.0, and 8.0?
- Set up the equations to describe the speciation of uranyl, the uranyl monocarbonate, and the uranyl dicarbonate.

Questions

- Comment in blog
- Respond to PDF questions